Divisão por zero e o resto da divisão
O problema da divisão por zero (e um pouco sobre tratamento de exceções)
Provavelmente você se lembra que o resultaddo de dividir um número por zero é em geral considerado um valor “indefinido” na maior parte dos contextos matemáticos. Em Python se o seu programa for obrigado a avaliar essa conta ele vai parar tudo e “levantar uma exceção” chamada ZeroDivisionError
.
Exceções são um tipo de erro que é diferente dos erros de sintaxe, você também pode encontrá-as descritas como “erros em tempo de execução”. Lidar com elas é às vezes inescapável, um procedimento conhecido como “captura” ou “tratamento” de exceções. Pra dar uma idea do que estamos falando, imagine que você pediu ao Python para gravar um arquivo no seu computador, mas o sistema operacional avisou que não foi possível (acabou o espaço, por exemplo, ou o caminho indicado da pasta não existe), acontecerá um
IOError
, e se o programa não foi preparado para tratar esse tipo de exceção graciosamente com um aviso para a pessoa que pediu a gravação, sua execução vai ser interrompida.
Voltando para a questão da divisão por zero, imagine que você tem no meio do seu programa uma divisão mas o número que divide, o denominador, é variável e de vez em quando ele pode ser zero, como se proteger da interupção do seu programa?
Isso pode acontecer, do denominador variar, por diversos motivos, por ele ser resultado de uma outra conta que varia, por depender de dados externos, da posição do mouse ou de uma resposta da pessoa usando o programa!
Uma maneira de resolver é testar antes de qualquer divisão cujo denominador varia se ele vale 0 (ou se não vale 0) e propor uma execução que não dependa dessa operação de divisão caso ele seja 0:
if denomidador == 0: # se denominador é igual a 0
resultado = 1000000
else:
resultado = 10 / denominador
Ou o equivalente
if denomidador != 0: # se denominador não é igual a 0, != significa "é diferente de"
resultado = 10 / denominador
else:
resultado = 1000000
Uma outra maneira, talvez mais sofisticada, é usar uma estrutura para exceções do Python, que futuramente vai servir em casos como erros na manipulação de arquivos e outros em que você precisa “tentar” fazer a operação que pode não funcionar (que pode “levantar uma exceção”):
try:
resultado = 10 / denominador
except ZeroDivisionError:
resultado = 1000000
Uma outra maneira, malandra
Quando você sabe que os valores do denomidador nunca ficam negativos, e o resultado da divisão pode ser um número aproximado*, é possível somar algum valor que apenas impeça o denomidador de ser zero.
Lembrando que operações com números do tipo ponto flutuante são frequententemente boas aproximações, leia mais sobre isso em Números inteiros (int) e de ponto flutuante (float).
tangente_aproximada = dy / (0.00001 + distancia)
fator_de_crescimento = 1 / (1 + mouse_x) # o resultado é no mínimo 1 e sem divisão por zero pois mouse_x nunca fica negativo
Agora a parte divertida: O resto da divisão
Em inglês a operação para obter o resto da divisão com inteiros tem o nome de modulo ou modulus o que pode causar uma grande confusão pois na matemática em português a palavra ‘módulo’ com a notação |num|
é usada também para falar do valor absoluto (sem o sinal) de um número (em programação usamos abs()
para isso), e em Python módulo é o nome de pedaço organizado de uma biblioteca de funções de programação, em geral um arquivo .py
.
Mas estamos falando então aqui do resto da divisão com inteiros. “Quantas vezes o 3 cabe no 7? duas! e sobra quanto? 1”.
O resto da divisão nos inteiros de 7 por 3 é 1. Em Python obtemos esse valor com o operador %
.
resto = 7 % 3
print(resto) # exibe: 1
E essa operação é extremamente útil, para saber se um número é par ou ímpar, se é divisível por um certo número ou para produzir sequencias que se repetem!
Testando se um número é par
if a % 2 == 0:
print('a é par!')
else:
print('a é impar!')
Um exemplo visual, em que a cor do círculo muda se o número do quadro é par ou impar.
def setup():
size(500, 500)
background(0, 100, 100)
no_stroke()
def draw():
# se o número do do quadro for par, preenchimento preto
if frame_count % 2:
fill(0)
else: # senão, preenchimento branco
fill(255)
circle(mouse_x, mouse_y, 100)
Testando se um número é divisível por outro
if a % b == 0:
print('a é divisível por b!')
else:
print('a não é divisível por b!')
Mantendo os números circulando até um valor máximo
Para qualquer valor de a, o resultado da expressão a % b sempre é menor que b, e no máximo vale b - 1. Podemos usar n % max em uma sequencia crescente de números n para obter uma sequência de números com repetição periódica da seguinte maneira:
for n in range(10): # pegue um n para cada número de 0 a 9
print(n % 2) # exiba no console o resto da divisão de n por 2
Resultado:
0
1
0
1
0
1
Outro exemplo.
for n in range(100): # pegue um n para cada número de 0 a 99
print(n % 5) # exiba no console o resto da divisão de n por 5
Resultado (truncado, seriam 100 números):
0
1
2
3
4
0
1
…
4
Um exemplo visual, em que as cores são definidas pelo matiz, com um número que vai de 0 a 255 e volta para o 0, calculado a partir do resto da divisão do número do quadro (frame_count
) por 256.
def setup():
size(500, 500)
background(0, 100, 100)
no_stroke()
color_mode(HSB) # matiz, saturação, brilho
def draw():
matiz = frame_count % 256
fill(matiz, 255, 255)
circle(mouse_x, mouse_y, 50)